Skip to main content

Verizon and Ericsson trial mmWave 5G backhaul in the US

Verizon mmWave IAB
(Image credit: Future)

Verizon and Ericsson have completed a proof-of-concept trial using new Integrated Access Backhaul (IAB) technology to deliver Verizon’s 5G Ultra Wideband service without the need for fiber installations, relying instead on a dedicated portion of available mmWave bandwidth to connect to the core network.

5G networks rely on fiber-optic cable to connect cell sites, and provide a fast, low latency connection back to the core network, but they are costly to install, and it can take time for mobile network operators to work through localized licensing and regulatory restrictions, which can cause significant delays to 5G network roll out.

“Fiber is the ideal connection between our network facilities. It carries a ton of data, is reliable, and has a long roadmap ahead as far as technological advancements," said Bill Stone, Vice President of Planning for Verizon. "It is essential. However, this new IAB technology allows us to deploy 5G service more quickly and then fill in the essential fiber at a later time."

Ericsson’s microwave

Installing a fiber-optic network is a lengthy and costly undertaking, and so Verizon and Ericsson engineers have found an alternative way of using millimeter wave spectrum for backhaul, which can be used as an interim solution, and accelerate deployment of 5G networks, especially into more remote areas.

"This IAB proof of concept demonstrates a complementary solution, enabling faster deployment of the high-quality, high-performance 5G transport needed in a 5G world."

Ulf Forssen, Ericsson.

“Ericsson’s microwave and fiber mobile transport solutions are an important enabler for 5G services,” said Ulf Forssen, head of standards & technology, development unit networks, at Ericsson. “This IAB proof of concept demonstrates a complementary solution, enabling faster deployment of the high-quality, high-performance 5G transport needed in a 5G world.”

Verizon's IAB technology works by using an airlink, point-to-point connection over mmWave spectrum, instead of a fiber-optic cable to send data throughout the network. And a portion of bandwidth is automatically allocated to the task of sending data from a customer's device to the cell tower, whilst another portion is then allocated to send that data from the 5G towers to the core of the network.

Once fiber is installed, the mmWave allocation being used for backhaul can then be redistributed, providing greater 5Gcapacity for customers.

Dan is a British journalist with 20 years of experience in the design and tech sectors, producing content for the likes of Microsoft, Adobe, Dell and The Sunday Times. In 2012 he helped launch the world's number one design blog, Creative Bloq. Dan is now editor-in-chief at 5Gradar, where he oversees news, insight and reviews, providing an invaluable resource for anyone looking to stay up-to-date with the key issues facing 5G.